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and the average number of atoms in any of  the three 
o9 regions is 

M~= ~,_ ( T -  I ) Z / ( T - S y  . (32) 

If we begin with an atom in one of the ¼(T-3S)  de- 
fective configurations, of the T -  1 possible boundaries 
there are - tg(T-3S)-  1 fictitous boundaries, 3 ( T - 3 S ) / 4  
defect/defect boundaries, and 3S defect/o9 boundaries. 
Hence the probability that a boundary is real is 

[3 (T-3S) /4+ 3S] / (T-1)  = ¼(T+ S ) / ( T -  1) 

and the average number of atoms in any of the four 
defective regions is 

16 
Mo= 9c~2 ( T -  I)2/(T+ S) 2 • (33) 

Equations (32) and (33) relate M,o and Mn to u, T, 
and S, quantities which are essentially fictitous and not 
observable. We prefer to express them in terms Gf the 
experimentally measurable r/ and y. With the aid of 
equations (3) and (25) we find that 

M,,=¼(2y + 3)2/[(y+ I)2(1 - r/)2], (34) 
and 

Mo=~(ZT+3)2/[(y+Z)Z(1-rl)Z]. (35) 

A complete statistical description of the structure 
of the hexagonal plar'.e should include not only the 
average sizes of the various regions, but as well the 
relative numbers of regions to be found in the plane. 
Consider a plane containing M atoms. Let there be V 
regions which are o91. If we choose an atom at random, 
the probability that it is in an o91 region is 

VM,o S 
M - T  - I / ( 2 y + 3 )  

by equation (3). So with equation (34), the number of 
o9~ regions per atom in the plane is 

V 4(y + 1)z(1 - q)z 
M = (27+3) 3.. (36) 

Let there be W regions associated with one of the four 
possible defective configurations of Fig. 3 in the plane 
of M atoms. Then 

M = 3 VM~ + 4 WMo 

and from equations (34), (35), and (36) the number o f  
defective regions of a particular type per atom in the 
plane is 

W Q y(y+2)2(1-r/)  z 
M = ~  (2~,+ 3)3 (37) 

This means that though the average size of a defect 
region in the plane is a relatively insensitive function of 
y [equation (35)], their number density in the plane de- 
creases rapidly as y becomes small. 

With the values of y = 0.24 and r/= 0.055 found from 
the measurements, from equations (34) and (36), for 
any one of the three kinds of co regions, there are on the 
average 2.20 atoms per region and 0.130 regions per 
atom in the plane. From equations (35) and (37), for one 
of the four kinds of defect regions, there are 1.20 atoms 
per region and 0.029 regions per atom in the plane. The 
hexagonal planes are very imperfect. 
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An analysis of powdered-diamond diffraction data with Hartree-Fock and standard molecular C 
atomic form factors yields the Debye-Waller parameters 0-20_+0.01 and 0.172_+0.009 ,~2 respectively. 
The lattice-dynamic value, which is calculated here from published phonon dispersion curves measured 
by inelastic neutron scattering, is 0.149-0.150 A2 at 298°K. It is shown that a small amount of an 
orbital product, .SCF .SXO in the core atomic scattering factor can dramatically alter the Debye-Waller • ( I s  Z 2 s  , 

parameter. For diamond, this latter scattering factor gives a value of 0.134+ 0.009 A 2. 

The determination of an accurate Debye-Waller factor 
for simple monatomic crystals by absolute X-ray dif- 
fraction intensities is generally limited by the model for 
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crystal diffraction. In particular, thermal diffuse scat- 
tering and extinction phenomena make it difficult to 
infer true Bragg structure factors from a set of ac- 
curately measured intensities of X-ray scattering. Even 
if these difficulties can be successfully overcome, the 
analysis for the Debye-Waller factor at a single tem- 



ROBERT F. STEWART 603 

perature must rely on a theoretical atomic form factor, 
which is a non-constant function of the X-ray scat- 
tering vector. (For neutron diffraction the same com- 
plication in coherent scattering length does not occur.) 
In practice one usually uses the one-electron density 
function from a spin-restricted Hartree-Fock atomic 
wave function for the atomic scattering factor. Such a 
representation may well be inappropriate for the atom 
in a crystal. In any event the inference of the Debye- 
Waller factor rests on the assumption that the one- 
electron density follows a small nuclear displacement 
so that the time-averaged one-electron density function 
is a simple convolution of the stationary charge density 
onto the nuclear distribution function. In the limit of 
small displacements the assumption is reasonable. In 
the present note we will adopt this position, but will 
pursue the question on the reliability of a Hartree-Fock 
atomic form factor. 

The author has pointed out that 'standard molecular' 
scattering factors for the first-row atoms are more ap- 
propriate for a valence charge-density analysis of 
organic molecular crystals than are form factors com- 
prised of products of Hartree-Fock 2s and 2p atomic 
orbitals (Stewart, 1970). Coppens (1971) has reported 
that atomic thermal parameters, based on the use of 
standard molecular scattering factors in structure re- 
finements of X-ray data, are in closer agreement with 
neutron diffraction results than a similar refinement 
based on Hartree-Fock atomic scattering factors. The 
standard molecular scattering factors have smaller 
amplitude than a Hartree-Fock form factor at larger 
values of sia 0/2. This is due to the neglect of a density 
contribution on and near (_<0.1 A) the nucleus that 
arises from the square of the 2s Hartree-Fock atomic 
orbital. In a qualitative way, the standard molecular 
scattering factor will account for a drift of charge 
density off the nucleus in the formation of a chemical 
bond for a first-row atom. An illustration of the dif- 
ferent Debye-Waller parameters from these atomic 
scattering factors is given below. 

An accurate set of X-ray diffraction structure factors 
has been published by G6ttlicher & W61fel (1959). 
These workers report a Debye-Waller factor, B= 
0"2007/k 2 which was derived by fitting the higher-angle 
data (sin 0 /2<0.7 /k  -~) to a Hartree-Fock atomic 
scattering factor. The data are absolutely scaled. For 
the study reported here, all seventeen data points are 
included in the error function 

e = ~ (1/trZ/ow) [fow - f  exp ( -  Bx2)] 2 (1) 
gw 

where x=s in  0/2 and fow and trgw are the data points 
and estimated standard deviations, respectively (G6tt- 
licher & W61fel, 1959). The function, f, is the atomic 
scattering factor of interest with which the one-dimen- 
sional error function (1) is minimized with respect to 
B, the Debye-Waller parameter. The results for two 
Hartree-Fock scattering factors and a standard molec- 
ular scattering factor are given in Table 1. The second 

Hartree-Fock entry for C is the so-called prepared 
valence state which is derived from the 5S state of C. 
The two Hartree-Fock results are in substantial agree- 
ment whereas the standard molecular scattering factor 
affords a possibly significantly lower Debye-Waller 
parameter. 

Table 1. Diamond powder X-ray Debye-Waller factors 
for different atomic scattering factors 

R , , =  {e/Y.(fg,,/a/ow)'} l/z. The last entry is the lattice dynamic  

H - F  
H - F  
Standard  
molecular 
Cusp- 
constrained 
core 
Lattice 
dynamic 
calculation 

value for diamond. 
f B(A 2) Rw 

(ls)2(2s)2(2p) 2 0.204_+0.014 0"0379 
(ls)Z(2s)2(2p) a 0"195 _+ 0.016 0"0408 

( I s)2(L)4 0-172 _+ 0.009 0.0240 

(ccK)2(L)  4 0" 134 + 0.009 0"0247 

0 . 1 4 9 - 0 . 1 5 0  

The true Debye-Waller factor for diamond can be 
calculated from a frequency spectrum of the solid. The 
appropriate expression, as given by Blackman (1937), is 

B=2hZ/(mkT) fog(v){1/u(e"-1)+½u}dv (2) 

where u= hv/kT and g(v) is the normalized total density 
of normal vibrations in the crystal. The dispersion 
curves for phonons in diamond have been measured, 
(Dolling & Cowley, 1966; Warren, Yarnell, Dolling & 
Cowley 1967), so that g(v) is known experimentally 
and (2) may be easily computed. The simple average, 
(v - l ) ,  is given by Dolling & Cowley (1966) and 
amounts to a zero-point contribution of 0"1288 ,~2 to 
the Debye-Waller factor. The temperature-dependent 
term is small and can be safely estimated with a Debye 
spectrum since the equivalent Debye cut-off frequencies 
are relatively intensitive to the moments, (v"), of the 
distribution function g(v) for diamond (Dolling & 
Cowley, 1966). For the (v -2) moment the equivalent 
Debye frequency is 3"96 x 1013 sec -1 and for (v -1) it is 
3 " 8 7 x  1013 sec  -1 .  These Debye frequencies are the 
extremes for the moments (v -2) through (v6). Thus at 
T=298°K,  the thermal average adds an amount 
between 0"0202 to 0"0216.~ 2 to the Debye-Waller 
factor. The lattice-dynamic value for B, from (2), is 
0.149-0.150 A 2. This result is considerably below the 
X-ray values listed in Table 1. 

The data of G6ttlicher & W61fel are not corrected 
for thermal diffuse scattering, but such additional 
intensities to the Bragg peak should be small since the 
elastic constants are rather large. The neglect of diffuse 
scattering in the analysis of X-ray diffraction data 
always results in a low determination of the Debye- 
Waller parameter. From the relations given by Lucas 

A C 29A - 2* 
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(1969) and the elastic constants of diamond listed in 
Kittel (1967), we conclude that inclusion of thermal 
diffuse scattering in the analysis will increase B by no 
more than 0.01/~2. This correction would introduce 
further discrepancy between the Debye-Waller param- 
eter based on the Hartree-Fock or the standard mole- 
cular atomic scattering factors and the lattice dynamic 
value from (2). If extinction were appreciable in the 
G/Sttlicher & W61fel data, a high estimate of the Debye- 
Waller parameter would result. The extinction would 
have to reduce the intensity by at least 10 % to account 
for the discrepancy. This is probably too large for the 
powder data. 

If it is assumed that the lattice-dynamic value for B 
is correct and that the G6ttlicher-W/51fel data is cor- 
rectly reduced to structure factors (an error no larger 
than 2-3 %), then it can be inferred that the atomic 
scattering factor has too large an amplitude at the 
larger sin 0/2 values (sin 0/2 > 0 .7 /~-  ~). This means that 
the atomic density function has too much charge on 
and near the carbon nucleus for the description of the 
static charge density of carbon in the diamond lattice. 
One could attempt to solve the equations of motion 
for the electrons in the potential of stationary carbon 
nuclei at the diamond lattice sites. A recent self-con- 
sistent field calculation (Euwema, Wilhite & Suratt, 
1973) may well provide a satisfactory solution. Such a 
task, however, is not the intent of the present com- 
munication. Instead, an ad hoe construction of a den- 
sity function is outlined below. 

If one were to span the crystal wave function for 
diamond by the atomic-orbital basis functions, ..SCF Z l s  , 

zsro and higher orbitals, but without further inclusion 2s 

of ls and 2s type basis functions, then the one-electron 
density function would necessarily contain components 
of the form t .SCFx2 ^ SCF .STO tZ~ ) and;(x~ Z2~ • In the present discus- 
sion, " SCF Xa~ is the Hartree-Fock atomic orbital (Clemen- 
ti, 1965) with the lowest eigenvalue for the isolated 
atom, and Z2~"ST° is a standard molecular Slater-type 
orbital (Hehre, Stewart, & Pople, 1969). Neither the 
atomic Hartree-Fock nor the standard molecular 
density functions contain a density contribution from 
(SCF.SVO Rather than attempt a quantum-chemical I s  ,~2s • 

solution, one can estimate the amount of ..SCF ..STO in Z l S  / (2 s  

the density function from the nuclear cusp condition. 
For a many-electron wavefunction, which solves the 

non-relativistic Schr/Sdinger equation, Kato (1957) has 
shown that certain cusp constraints must be invoked 
because of the Coulombic singularities which result when 
the electrons touch the atomic nucleus or each other. 
This rigorous condition places a constraint on the one- 
electron density function for both atoms (Steiner, 
1963) and molecules (Pack & Brown, 1966). The ap- 
propriate relation is 

[(~ fl/br)/fi]r j=o = 2Z (3) 

where fl is the spherically averaged one-electron density 
function about t h e j t h  nucleus with an atomic number 
of Z. Hartree-Fock wave functions for the first row 

atoms, as tabulated by Clementi (1965), do not satisfy 
(3). [In the same compilation, second-row atoms do 
satisfy the cusp condition.] For example the Hartree- 
Fock wave function for C(3p), tabulated by Clementi, 
has a value of - 12.02920 for (1). We correct this small 
defect by including a small amount of the orbital 
product X~"SCF Z2~'sv° in the core density function. 

For a carbon atom, a cusp-constrained core density 
function is 

SCF STO pcc=0"957605(zSCV) 2 +0"042395N~1~ ~2s (4) 

where N =  .scv sTo 1/$Xls Y2s dr. The function (4) can be 
populated with two electrons and used to calculate a 
cusp-constrained core scattering factor. Note that (4) 
has less charge on the nucleus than a 'standard molecu- 
lar' density function (about 4 % less) and the gradient 
of the density, (4), at r =  0 is also less than a 'standard 
molecular' result by ~ 4 %. 

The construction above depends crucially on a 
slightly inexact representation for Zl~"scv" A numerical 
Hartree-Fock wave function for an atom does satisfy 
the nuclear cusp condition; for this case no contribu- 
tion of " scv .sTo *~s *2~ is needed to satisfy (3). Thus the 
estimate -" ..scv..sxo in the density function for carbon tg i  Z l s  Z2s  

that is displayed in (4) is a consequence of the analytical 
expansion (Clementi, 1965) for Zx~. Nevertheless it is 
instructional to explore the influence of the density 
function (4) on the determination of the Oebye-Waller 
parameter for diamond powder diffraction data. 

The scattering factor from (4) has a smaller amplitude 
of scattering at sin 0/2 > 0"7 A-1 than a pure-core scat- 
tering factor by about l0 %. Estimates in the change in 
B can be made for the case where the crystal contains 
one atom per unit cell and the sampling of diffraction 
data is sufficiently dense to replace the least-squares 
sum with an integral over sin 0/2. For this case the 
absolute change in B for a change in the scattering 
factor is 

AB= I (Af/x2f)fZx6 exp ( -  2Bx 2) d x / f  f2x6 

x exp ( -  2Bx 2) dx (5) 

where x is sin 0/2 ill A.- ~ and the integration is restricted 
to the Ewald sphere. The relative differences in B are 
most pronounced for small values of B. For a C atom 
the relative change, AB/B is -0 -22  for B=0-2 •2 but 
only -0"02 for B = 2  ]~z when compared to a result 
from a Hartree-Fock scattering factor. Thus the cusp 
constraint, as we have introduced it via (4), can 
dramatically alter the X-ray value of a Debye-Waller 
parameter for a monatomic crystal that has an in- 
herently small mean-square amplitude of vibration. 
The value of B, which minimizes the error function (1) 
for a scattering factor based on (4), is given as the 
fourth entry in Table 1. It is much less than the other 
X-ray values and is even below the lattice dynamical 
result. When (4) was assigned a variable electron-popu- 
lation parameter in the least-squares error function, 
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the same Debye-Waller parameter was found and the 
population parameter was 2-01 ___0"03. Evidently the 
cusp-constrained density function (4) does not have 
quite enough charge in the neighborhood of the 
nucleus. 

As pointed out above, the construction of(4) is along 
tenuous lines, but at least serves to illustrate the im- 
portance of electronic details in a calculated atomic 
scattering factor. A difficult, but accurate, quantum- 
chemical calculation of the electronic wavefunction 
for diamond is probably needed to correctly describe 
the X-ray scattering at the large values of sin 0/2 
(>0 .7 /~ - ' ) .  A Hartree-Fock core scattering factor 
appears to be insufficient for the case studied here. It 
should also be noted that a detailed charge-density 
analysis of the valence structure of diamond (Stewart, 
1973) does not significantly alter the results in Table 1. 
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In previous treatments of diffraction by random-layer lattices the effect of strain has been neglected. 
In this study the applicability of Cauchy's, Gauss's and taplace's distributions to strain in layered 
lattices is examined and equations for the intensity profiles have been developed which take the strain 
effect into account. An analysis of the scattering intensities of glassy carbon revealed that the strain 
distribution has a Cauchy form and the contribution of strain to the widths of the observed intensity 
profiles ranges from 43 to 85 %. 

Introduction 

The peculiar shape of the two-dimensional reflections 
produced by random-layer lattices was explained 
quantitatively by Warren (1941). Later work mainly 
concerned some of the simplifications made in the 
derivation of the Warren equation and alternative 
approaches in deriving similar equations (Wilson, 1949; 
Brindley & Meting, 1951 ; Warren & Bodenstein, 1966; 
Ruland, 1967). The above treatments involved the con- 
cept of small layers. Ergun (1970) noted that in carbons 
the existence of small layers having sizes indicated by 
the line widths of their diffraction profiles is not 
substantiated by electron-microscope observations or 
small-angle scattering and proposed a defective lattice 
theory. A recent study of the Fourier transforms of the 

intensities of a glassy carbon (Ergun & Schehl, 1973) 
revealed that the observed widths of the peaks are 
largely produced by strain. For example, strain ac- 
counts for 57 and 78 % of the observed widths of the 
11 and 41 reflections, respectively, of the glassy carbon 
studied. For an authentic interpretation of the ob- 
served profiles it appears that it is necessary to develop 
equations that take the strain into account. 

Theory 

For an isotropic sample the contribution to the inter- 
ference function of an interatomic distance l is given 
by sin (hl)/hl, with h=4~z sin 0/2, 0 being the Bragg 
able and 2, the wavelength. If, owing to strain, an inter- 
atomic distance l is altered by 6, we need to evaluate. 


